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Abstract. We suggest a disordered traffic flow model that captures many features of traffic flow. It is an
extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic
model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our
model leads under its intrinsic dynamics, for high values of braking probability p,, to a constant flow at
intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers p, — 0,
the model exhibits a density wave behavior that was observed in car following models with optimal velocity.
The gap of the disordered model we present exhibits, for high values of p, and random deceleration, at a
critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.

PACS. 45.70.Vn Granular models of complex systems; traffic low — 02.50.Ey Stochastic processes —

05.65.+b Self-organized systems

1 Introduction

The investigation of traffic flow has attracted the interest
of physicists already a long time ago. Different approaches
have been proposed [1,2]. One can distinguish macroscopic
and microscopic ones. In macroscopic models the traffic is
viewed on the one hand as a compressible fluid formed
by the vehicles and then analyzed using hydrodynamical
fluid theories [3], on the other hand as a gas of interacting
particles and then treated using kinetic theories of gases
based on the Boltzmann equation [4].

In the car-following theories [5, and references therein],
which are a typical example of microscopic approaches,
individual vehicles are distinguished and the equation of
motion, for each one, is the analogue of the Newton’s equa-
tion. Many car-following models have been proposed de-
pending on a sensitivity parameter and reaction time. But,
they lead to unrealistic description of the behavior of free
vehicles which have a large distance to the next vehicle
ahead and suffer from serious problems in the low-density
limit. To overcome these problems an optimal velocity Vi,
was introduced and a typical form [6] gives satisfactory re-
sults compared with empirical data. But, it has been found
empirically that V,,; depends on the traffic state [7]. For
a detailed study of all the above approaches and theories
we refer the reader to the review articles references [5, 8,
and references therein].
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CA approach can be considered as a powerful tool,
in statistical physics, to model local and nonlocal interac-
tions [9]. Nowadays, the simulation of traffic using cellular
automata approach [10] stands out for its simplicity. It is a
microscopic description of traffic flow governed by simple
rules that each individual driver follows.

The stochastic traffic CA model introduced by Nagel
and Schreckenberg [11] (NaSch) is governed by simple
rules. It simulates single-lane one way traffic and is able
to reproduce the main features of traffic flow as backward
moving shock waves and the so-called fundamental dia-
gram, J = J(p). In real traffic the system dynamics is
very complex. However, the stochasticity introduced into
the model takes into account of some events due to hu-
man driving: the maximum speed fluctuations, overreac-
tions at braking and retarded acceleration. The NaSch
model has been intensively studied using both analyti-
cal and numerical methods [12]. Many extensions of this
model have been established in order to understand the
rich variety of physical phenomena exhibited by vehicular
traffic [13,14]. Some of these phenomena, observed in ve-
hicular traffic under different circumstances, include tran-
sitions from one dynamical phase to another, criticality
and self-organized criticality, metastability and hystere-
sis, phase-segregation, etc. We note that no one of these
extensions is able to reproduce the main phenomena of
real traffic flow all together.

Since inhomogeneities have relevant effects on the sys-
tems dynamics, many kind of disorder were involved in
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traffic flow models. It was shown numerically that the
NaSch model with a quenched random deceleration prob-
abilities displays queueing of cars with a power law dis-
tribution of gaps between the cars at low densities [15].
The jammed phase behavior is similar to that observed
in the standard NaSch model. The introduction of defects
in NaSch model has a very high impact on the funda-
mental diagram and the dynamics of the model [16,17].
One distinguishes between two kind of defects, the site-
wise and the particlewise disorder. The later case pro-
duces phase separated stationary states, which consists of
a large jam behind the slowest vehicle and a large gap in
front of it at low densities. The single defect site induces
a third phase, which is also a phase separating, located
between free flow regime and jamming phase where the
flow is constant [17]. This intermediate phase was already
observed in the asymmetric exclusion model, which corre-
sponds to the NaSch model with v,,,, = 1, for the sitewise
disorder [18].

Since the CA approach may give, in a simple way, a
good description of real traffic and captures the main phe-
nomena observed by analyzing empirical data [7,19], we
suggest an extension of the NaSch model that includes ex-
plicitly random incrementation of driver velocities. How-
ever, we think that it should be more realistic to take
into account of non uniform acceleration and deceleration
of vehicles as the drivers act differently. In the road you
find ‘careful’ drivers, which don’t drive fast, as well as
‘careless’ ones, which drive at their maximum speed. De-
pending on the distance ahead and the velocity of the
vehicle the drivers may accelerate or decelerate more than
one unit at each time step. Usually the competition be-
tween quenched randomness and dynamic fluctuations in-
duces phase transitions between a disordered-dominated
phase and fluctuation-dominated phase with qualitatively
distinct behaviors. Thus, we expect that a model with
random acceleration should induce new dynamical states
especially for intermediate densities since the fast drivers
are stuck by the slowest ones. The model is defined in
Section 2 and depending either on random acceleration
or deceleration we show numerically in Section 3 that
it presents some interesting phenomena which were ob-
served separately in different varieties of traffic flow mod-
els [19-21,23]. In Section 4 we study the gap distribution
in order to show that the model exhibits a critical self or-
ganized behavior. The conclusion of our mean results is
given in Section 5.

2 Definition of the model

The disordered traffic flow model we present is a proba-
bilistic CA where not only space and time are discret, but
also the state variable of the vehicles. As in the NaSch
model each cell can be empty or occupied by exactly one
vehicle n and the state of each one is characterized by its
velocity v, which can take one of the v, + 1 allowed
integer values v = 0,1, 2, ..., Uymae. We denote the position
and the velocity of the nth vehicle by z,, and v, respec-
tively. Then, g, = zp4+1 — xn — I, where [ is the vehicle
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length, is the gap between the nth vehicle and vehicle n+1
in front of it. At each time step t — ¢ + 1, the N vehicles
arrange themselves on a finite lattice of length L following
a parallel update according to the following rules:

Step 1: acceleration
If v, < Umaa, the velocity of the n-th vehicle is increased
by a,, sites, i.e.

Up, — min(vy, + an, Vmaz)

(1)

where a,, = [pngn] + 1.

Step 2: deceleration
If (g, +1) < vy, the velocity of the n-th vehicle is reduced
to gn, i.e.

(2)

Up — min(vna gn)'

Step 3: randomization

If v, > 0, with probability p, the velocity of the nth ve-
hicle is decreased randomly by d,, sites, i.e.
—d,)

v, — max(0, vy, with the probability p, (3)

where d,, = [qnm’in([’l)maxL gn)] + 1.

Step 4: vehicle mouvement
Each vehicle moves forward according its new velocity v,
obtained from the steps 1-3, i.e.

(4)

The symbol [A] denotes the integer part of A and the
quenched p, and g, variables are randomly distributed in
the interval [c, 1] according to the distribution laws:

Ty — Ty + Up.

n+1

e(p) = m@ —o)" (5)

and
n—+1

Y(g) = m(l —q)". (6)

As the model we suggest is an extension of the NaSch
model, the four steps quoted above are necessary to re-
produce the basic features of real traffic [5,13]. In the first
step the driver might move [p,,g,]+1 sites while in the sec-
ond one he reduces its velocity and adjusts it according to
the distance to the vehicle ahead. The randomization step,
which involves a randomization parameter p,, describes
the acceleration delay of each driver or its overreaction
in braking, which leads to the spontaneous formation of
traffic jams. In real traffic the driver ability to drive more
or less fast is a pertinent parameter in the dynamics of ve-
hicles. The distributions given above reflect the fact that
the ‘careless’ drivers drive as fast as possible. They cor-
respond to higher values of p, and lowest values of ¢,.
On the other hand the ‘careful’ drivers drive slowly since
their corresponding probabilities p,, and ¢, are the lowest
respectively the highest.
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3 Numerical investigations
of the fundamental diagram

Our numerical investigations are performed on a ring com-
posed of L sites. The density of the vehicles is given by
p = N/L where N is the number of vehicles. The flow (.J)
is expressed as p(v) where the mean velocity (v) of the
vehicles is defined as the fraction of the sum of movable
vehicle velocities among N vehicles. The length of the ve-
hicles, [, will be taken as the unit of space coordinate. We
use a parallel updating scheme since it takes into account
the reaction-time and can lead to a chain of overreactions.
In what follow we will present the results obtained essen-
tially from the distribution defined in equations (5), (6) for
n = 1. Since the parameter ¢ doesn’t change neither the
phase diagram nor the different behaviors of the model,
we take ¢ = 1/2 for numerical simulations we performed.
We note that the role of the parameter c is only to enlarge
the disorder interval. More ¢ is low more the disorder is
large and in the limit ¢ = 1 the quenched disorder is can-
celed. In order to analyze the effects of different random
variables we will discuss 3 cases.

3.1 deceleration effects

We suppose that our vehicle drivers are all ’careful’ and
they drive as slow as possible. They accelerate just by
one unit at each time step while in the braking step 3
they may reduce their velocity as maximum as possible.
The fundamental diagram in this case, which corresponds
to p, = 0 for all vehicles, depends on the randomization
parameter values p,.. However weak the value of p, is, the
flow, which usually presents a sharp maximum, exhibits
a smooth variation at its maximum value (Fig. 1a). This
is due to the fact that the mean velocity of vehicles, v =
v(p), is a decreasing function of p, even at low densities
(Fig. 1b).

The existence of very slow vehicles in the system in-
duces a jamming regions even at very low densities. The
fast vehicles pile up behind the slowest ones. As a matter
of fact, the space-time diagram presents, for intermediate
values of p,, a macroscopic high density region confined
between relatively free flow ones (Fig. 2a). This results
from the fact that the slowest vehicles, which are randomly
distributed in the system, act like a blockage. Thus, the
flow gets a slower value than in the Nasch model. By in-
creasing the global density within the segregated phase the
bulk densities of these regions remain constant, only their
length changes. Consequently, the average flow is constant
in the segregated phase, because the average density in
the vicinity of the high density region does not depend
on the global density. This intermediate phase, which is
located for piow < p < prign may be illustrated looking
at the density profile which is plotted in Figure 2b. For
any particular choice of random ¢,, variables according to
the distribution law g(q) (Eq. (6)) one observes a sepa-
ration into macroscopic high and low density regions. As
the disorder average wasn’t taken into account the density
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Fig. 1. (a) The fundamental diagram of the model and (b)
p-dependence of the velocity for vpmqz = 5 in the case of random
deceleration and uniform acceleration.

fluctuations observed in both regions result from the ran-
dom decelerations of vehicles. They may also result from
the interaction between vehicles that cause a formation of
local jams (gaps) in the free flow (congested) region.

Thus, the average on the disordered g,, variables leads
to a quasi-constant flow in the segregated phase (Fig. 3).
As a result, one can distinguish, in the fundamental dia-
gram, three different phases depending on the global den-
sity namely low density phase, high density phase and
intermediate phase for piow < p < phrignh- By increasing p
in this intermediate phase, the flow presents a slow lin-
ear decrease. Its slope which is a decreasing function of p,
vanishes for some randomization parameter values.

This phase separation located in our model was found
in systems with ramps and systems with a stationary de-
fect [8,19]. For intermediate densities piow < p < Phigh
the flow is constant for these models. In this regime J(p)
is limited either by the capacity of the ramp or the de-
fect site. Even though the perturbations in these models
are different, they all exhibit a plateau formation in the
fundamental diagram as well as phase separation in the
system independently of the nature of blockage. In the
case of ramps it is the local increase of the density that
decreases the flow locally. In the model with a stationary
defect the increased slowdown parameter leads to a local
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Fig. 2. (a) The space-time diagram of the model and (b) the
corresponding site-dependence of the density, in the case of
random deceleration and uniform acceleration, for p = 0.3 and
randomization parameter p, = 0.8.
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Fig. 3. The fundamental diagram for p, = 0.6, in the case
of random deceleration and uniform acceleration, showing a
plateau at intermediate densities.

decrease of the flow. In our model the ‘careless’ drivers de-
celerate more than one unit and they act as a blockage in
the system. Thus, the increased slowdown vehicles leads
to a local decrease of the flow.

Other variants of the model defined above may be ob-
tained by modifying step 2 or both step 2 and step 3 in the
dynamics rules (Egs. (2), (3)). If we assume that in the
second step the vehicles may decelerate by reducing their

Fig. 4. (a) The fundamental diagram of the model and (b)
p-dependence of the velocity for vpmqz = 2 in the case of random
acceleration and uniform deceleration.

velocities to be at a distance to the vehicle ahead more
large than one unit such that v, — min(v,,gn, +1—dy),
the model presents a plateau formation in the fundamen-
tal diagram even for very low values of the randomization
parameter p,. The same result is obtained by changing
both step2 and step3 of the model rules:

step2 : v, — min(vy, gn + 1 —dy)
step3 : v, — maz(0,v, — 1) with a probability p,. (7)
Since the deceleration effects in these model variants are
emphasized, a plateau formation in the fundamental di-
agram occurs even at lower values of the randomization
parameter p,..

3.2 Acceleration effects

Even though that the acceleration of vehicles is over esti-
mated we think that it is worthwhile to study the effects
of randomness of a such parameter. Those effects on the
fundamental diagram and on the dynamics of the model
are studied by setting ¢, = 0 and choosing randomly the
variables p,, for all vehicles. In this situation all the drivers
are ‘careless’ and drive as fast as possible. By performing
numerical investigations we show that, for low values of
pr, the fundamental diagram (Fig. 4a) has quite similar
form to that one obtained in the NaSch model. Thus, the
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time

time

Fig. 5. The space-time diagram of the model, (a) p = 0.1 and
(b) p = 0.2, in the case of random acceleration and uniform
deceleration for vpma, = 5 and p, = 0.8.

distinction between these models should be formulated at
microscopic level.

As usual, the fundamental diagram depends on the
randomization parameter p,.. For low values of p, it
presents two different regimes with respect to the den-
sity. At low density the system is in a free flow state and
all the vehicles move, up to a certain density p;, at their
maximum speed (Fig. 4b). By increasing p,. this free flow
region decreases considerably, i.e. p; decreases, because
the vehicles may frequently brake and then reduce their
speed more than one unit. This leads to the formation
of spontaneous jams that are scattered in the space time
diagram (Fig. 5a). By increasing the density more jams
arise and are grouped together leading to a large strip of
jammed region separated by free flow regions (Fig. 5b).

Depending on the randomization parameter p, the mi-
croscopic state of the system exhibits different structures.
Indeed, for low values of p, the system may selforganize
into a density wave state (Fig. 6). For a such values of p,
most of the vehicles accelerate randomly and benefit from
the distance of the vehicle ahead. In addition, the velocity
of all vehicles in jammed region is limited by the slowest
one. Then, if most of the vehicles located at the jammed
region drive fast (slow) we have Ji, < Jour (Jin > Jout),
where Ji,, (Jout) denotes the number of entring (leaving)
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time

- hme

Fig. 6. The space-time diagram of the model in the case of
random deceleration and uniform acceleration for vmaez = 5,
(a) p = 0.15 and p, = 0, (b) p = 0.2 and p, = 0.05 and
(c) the spatio-temporal evolution of the gap, for p = 0.2 and
pr = 0.05. A density wave behavior is detected.

vehicles in the jammed region per unit of time. As the in-
coming vehicles pile up behind the jam we have p,ut < pin
where pout(pin) is the density of vehicles that leave (drive
in) the jam. Consequently, the domain-wall between two
stationary regions, free flow and congested region, propa-
gates either in the opposite or the same direction of mov-
ing vehicles with the velocity vgspock, which depends on the
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values of J;, and J,,:. From mass conservation we obtain

jout - J'L'

Ushock = .
Pout — Pin

(8)
As a result, the jammed regions wave from side to side. A
such behavior was observed in car following models with
an optimal velocity that takes into account the charac-
teristics of different vehicles [20]. In those models the dif-
ferent maximum velocities among vehicles are included in
the optimal velocity function while in our CA model all
vehicles keep the same v,,4, and the characteristics of dif-
ferent drivers are induced in the acceleration terms. We
note that the model presents regular oscillating behavior
(Fig. 6a) for vanishing value of the randomization param-
eter, i.e. p, = 0, while for finite values of p, the braking
rule induces some irregularities. Detailed numerical inves-
tigations of the phase transition among the freely moving
phase, the density wave phase and the homogeneous con-
gested phase show that there is a critical value of the ran-
domization parameter, p¢ above which the density wave
does not appear [21]. If we denote by gr (g;) respectively
vy (v;) the average headway and velocity within (out of)
the jam we may introduce an order parameter s = gy — g;
or s = vy — v; and study the dynamics of the jammed
region and the critical behavior of this inhomogeneous
phase.

3.3 Acceleration and deceleration effects

In real traffic we found both ‘careful’ and ‘careless’ drivers.
Then, both variables p, and ¢, should be chosen ran-
domly. For very low values of randomization parameter
pr, most of vehicles drive fast. Consequently, at interme-
diate densities the steady state of the system reaches a
density wave state with local ‘defects’ that are caused by
spontaneous jams. This microscopic structure results from
the interaction between the fast vehicles and the slowest
ones.

As in the case of slow drivers, i.e p, = 0, a region
of constant flow occurs for high values of p,(p, > %)
It becomes larger than in the previous case. Indeed, the
faster drivers are blocked by the slowest ones and they pile
up behind the jammed region. Consequently, the system
exhibits, at intermediate densities, a high density band
confined between relatively free flow regions.

4 The gap distribution of the model

Looking at the gap distribution over a wide range of den-
sities in the congested flow region we see that it depends
on the maximal velocity v, and the randomization pa-
rameter p,. In the case of high values of v, it exhibits,
for low values of p,, two maxima (Fig. 7). The position
of the maxima do not change considerably over a wide
range of densities. The first maximum is assumed for the
value zero. This means that the steady state of the system
in the congested phase is of a densely packed queue and
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Fig. 7. The gap distribution of the model, in the case of ran-
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and different values of p.
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Fig. 8. The log-log plot of the gap distribution for vmaz = 2,
pe = 0.1 and p, = 0.75, in the case of random deceleration and
uniform acceleration, and for different system sizes L ranging
from L = 860 to L = 3440. The finite size scaling analysis
gives a good fit of our data with the exponents 7 = 0.903 and
v = 0.083. The inset shows the finite size fit with 8 = 0.075.

the two maxima of the gap distribution may be associated
simply to a free flow phase with random distributed local
inhomogeneities that are densely packed jams. We note
that in a continuum limit of the NaSch model [22] the
first maximum was observed at a non vanishing value and
such a behavior was associated to a phase separation into
congested and free flow regions. By decreasing the den-
sity, the first maximum vanishes and the gap distribution
exhibits only one maximum that corresponds to the free
flow regime.

For high values of p, located in a narrow interval, i.e.
De; < Pr < De,, the model displays, in the case of ‘careful’
drivers, a power law gap distribution in the vicinity of
some critical density (Fig. 8). This behavior is a feature of
the self organized criticality (SOC) [23]. The distribution
doesn’t change considerably with the system size and finite
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Table 1. The estimation of the critical exponents 7 of gap
distributions at critical densities p. for different values of vmaz
and randomization parameter p,. The numerical errors of 7
and p. are respectively A7 ~ 0.001 and Ap. ~ 0.005.

Vmaz Pr Pe T
2 0.7 0.19 0.755
0.8 0.18 0.812
5 0.75 0.1 0.915
0.8 0.11 0.972

size data collapse of the form

P(g) =9 "f(g/L"). 9)

Using a finite size analysis it’s easy to see that P(g) =
L=Bf(g/L") with 8/v = . The critical exponents 7 and
v vary continuously with the randomization parameter p,
and the maximum velocity v,,q:. The SOC behavior re-
sults from the fact that the fast vehicles built behind the
slowest ones forming platoons separated by large gaps.
The power law decay of the gap distribution was illus-
trated analytically for the asymmetric exclusion model
with random rates using some statistical estimates [24].
The numerical estimation of the critical densities and the
critical exponent 7 of the gap distribution of our model
are represented in Table 1 for vye, = 2 and vVpmer = 5.
We note that the SOC behavior was also observed in a
stochastic traffic model with random deceleration proba-
bilities [15]. It was pointed out that the NaSch model with
random randomization parameter probabilities self orga-
nizes into a stable queueing phase at low densities and has
a power law gap distribution. This model belongs to the
same universality class of the BFL model [25] while our
model belongs to another universality class as the critical
exponents 7 are rather different.

In the case of ‘careful’ drivers, all vehicles accelerate
just by one unit at each time step but they may decel-
erate by reducing their velocity as maximum as possible.
In order to give a physical argument for the SOC behav-
ior exhibited in our model, we introduce a small param-
eter 6. Thus the probability that one driver decelerates
as maximum as possible is realized for 1 — § < ¢, < 1.
Such a probability is calculated from the distribution given
in equation (6): p,, ~ §2/2. At low densities the system
evolves according to its own dynamics and is however in-
terrupted by relatively small perturbations at vanishingly
small rates. The relaxation time of the system after such
a perturbation behaves like 1/62. Since § < 1, the system
gets enough time to organize itself and relax back to its
steady state before it is perturbed again. This effectively
separates completely the time scales for perturbing the
system and its response. This infinite time scale separa-
tion is an essential ingredient for the SOC behavior. The
system is then self similar and the scale invariance is due
to the fact that the jams are fractal in the sens that there
are smaller sub-jams inside large jams.

5 Conclusion

The dynamics of the disordered traffic flow, which is based
on the NaSch model, presented in this paper bears con-
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siderable structures and many of interesting features of
traffic flow. Random acceleration and deceleration terms
were introduced in the CA rules. Within numerical inves-
tigations we have shown that the model presents under its
own dynamics many interesting phenomena that were ob-
served separately in different varieties of traffic flow mod-
els namely the segregated phase, the density wave state
and the SOC behavior. Depending on the randomization
parameter p, a rich variety of fundamental diagrams is
obtained. For intermediate values of p, and low densities
the fundamental diagram may trigger transitions from free
to congested flow under its own dynamics without intro-
ducing any external perturbation like defects or on and
off-ramps [7,13]. We may assume that at intermediate
densities the slow vehicles act like a defect site leading
to a blockage. As a matter of fact an intermediate phase,
where the current is quasi-constant, is inserted between
free flow and jamming phases. The analysis of the micro-
scopic structure of the space time diagram for low values
of p,- shows that the system may organize itself into a wave
density phase where the jams (gaps) oscillate. Such behav-
ior was pointed out by Nagatani in the optimal velocity
model [20]. The gap distribution of our model in the case
of slow drivers exhibits, for some values of randomization
parameter p, and at low densities, a power law behavior
in the vicinity of a critical density signaling the existence
of SOC phenomenon. The critical exponents are rather
different from those obtained in a disordered traffic flow
model where the quenched disorder was incorporated in
the random deceleration probabilities [18]. The model we
suggest doesn’t belong to the same universality class of the
BFL model as the former model does. Finally, we note that
the disorder introduced in our model is the essential ingre-
dient to observe all the traffic features mentioned above
since they don’t occur in the case of uniform acceleration
and deceleration [26], i.e p,, = cst and ¢, = cst.

It is worthwhile to mention that our model is not a
generalization, to higher values of v,,4., of the disordered
ASEM studied in reference [24] where the braking param-
eter p, is chosen randomly according to the power law
distribution. Indeed, if we take, in our model, vy = 1
the first step of the rules defined in equations (1)—(3) will
be: v, — min(vy, + n, Vmaz) = Vmaz = 1 (since a,, > 1)
and d,, = 1. The disorder is then lost and the standard
ASEM, where particles jump only one site if it is empty, is
recovered. The disordered model we present in this paper
incorporates random acceleration and deceleration param-
eters and exhibits many interesting features of traffic flow.
It may be developed in order to capture other pertinent
phenomena observed in traffic flow as the hysteresis and
the synchronized state.
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